The 
Y-Δ transform, also written 
wye-delta and also known by many other names, is a mathematical technique to simplify the analysis of an 
electrical network. The name derives from the shapes of the 
circuit diagrams, which look respectively like the letter Y and the Greek capital letter 
Δ. This circuit transformation theory was published by 
Arthur Edwin Kennelly in 1899.
[1] It is widely used in analysis of 
three-phase electric power circuits.
|  | 
| Basic symbolic representation | 
Basic Y-Δ transformation[edit]

Δ and Y circuits with the labels which are used in this article.
 
 
 
The transformation is used to establish equivalence for networks with three terminals. Where three elements terminate at a common node and none are sources, the node is eliminated by transforming the impedances. For equivalence, the impedance between any pair of terminals must be the same for both networks. The equations given here are valid for complex as well as real impedances.
Equations for the transformation from Δ to Y[edit]
The general idea is to compute the impedance 

 at a terminal node of the Y circuit with impedances 

, 

 to adjacent nodes in the Δ circuit by
 
where  are all impedances in the Δ circuit. This yields the specific formulae,
 are all impedances in the Δ circuit. This yields the specific formulae,
![{\displaystyle {\begin{aligned}R_{1}&={\frac {R_{\text{b}}R_{\text{c}}}{R_{\text{a}}+R_{\text{b}}+R_{\text{c}}}}\\[3pt]R_{2}&={\frac {R_{\text{a}}R_{\text{c}}}{R_{\text{a}}+R_{\text{b}}+R_{\text{c}}}}\\[3pt]R_{3}&={\frac {R_{\text{a}}R_{\text{b}}}{R_{\text{a}}+R_{\text{b}}+R_{\text{c}}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f634337aa05e90fc7486a0f1461fbd93752fc354) 
Equations for the transformation from Y to Δ[edit]
The general idea is to compute an impedance 

 in the Δ circuit by
 
where 

 is the sum of the products of all pairs of impedances in the Y circuit and 

 is the impedance of the node in the Y circuit which is opposite the edge with 

. The formulae for the individual edges are thus
![{\displaystyle {\begin{aligned}R_{\text{a}}&={\frac {R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{1}}}\\[3pt]R_{\text{b}}&={\frac {R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{2}}}\\[3pt]R_{\text{c}}&={\frac {R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{3}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0413d8a47f9ecbcfbb64f2ed00d8e38c60dc7a69) 
Or, if using admittance instead of resistance:
![{\displaystyle {\begin{aligned}Y_{\text{a}}&={\frac {Y_{3}Y_{2}}{\sum Y_{\text{Y}}}}\\[3pt]Y_{\text{b}}&={\frac {Y_{3}Y_{1}}{\sum Y_{\text{Y}}}}\\[3pt]Y_{\text{c}}&={\frac {Y_{1}Y_{2}}{\sum Y_{\text{Y}}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec9ddaa81f562a2940d877abdf3fdfc5119ab270) 
Note that the general formula in Y to Δ using admittance is similar to Δ to Y using resistance.
Δ-load to Y-load transformation equations[edit]

Δ and Y circuits with the labels that are used in this article.
 
 
 
To relate 

 from Δ to 

 from Y, the impedance between two corresponding nodes is compared. The impedance in either configuration is determined as if one of the nodes is disconnected from the circuit.
The impedance between N1 and N2 with N3 disconnected in Δ:
![{\displaystyle {\begin{aligned}R_{\Delta }\left(N_{1},N_{2}\right)&=R_{\text{c}}\parallel (R_{\text{a}}+R_{\text{b}})\\[3pt]&={\frac {1}{{\frac {1}{R_{\text{c}}}}+{\frac {1}{R_{\text{a}}+R_{\text{b}}}}}}\\[3pt]&={\frac {R_{\text{c}}\left(R_{\text{a}}+R_{\text{b}}\right)}{R_{\text{a}}+R_{\text{b}}+R_{\text{c}}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/555fd400b9fa500913005b63dc74977cd1b075d5) 
To simplify, let 

 be the sum of 

.
 
Thus,
 
The corresponding impedance between N1 and N2 in Y is simple:
 
hence:
 (1) (1)
Repeating for 

:
 (2) (2)
and for 

:
 (3) (3)
From here, the values of 

 can be determined by linear combination (addition and/or subtraction).
For example, adding (1) and (3), then subtracting (2) yields
![{\displaystyle {\begin{aligned}R_{1}+R_{2}+R_{1}+R_{3}-R_{2}-R_{3}&={\frac {R_{\text{c}}(R_{\text{a}}+R_{\text{b}})}{R_{\text{T}}}}+{\frac {R_{\text{b}}(R_{\text{a}}+R_{\text{c}})}{R_{\text{T}}}}-{\frac {R_{\text{a}}(R_{\text{b}}+R_{\text{c}})}{R_{\text{T}}}}\\[3pt]{}\Rightarrow 2R_{1}&={\frac {2R_{\text{b}}R_{\text{c}}}{R_{\text{T}}}}\\[3pt]{}\Rightarrow R_{1}&={\frac {R_{\text{b}}R_{\text{c}}}{R_{\text{T}}}}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/397af0f10185e983be9bb27683d85dbaa0c540a4) 
For completeness:
 (4) (4)
 (5) (5)
 (6) (6)
Y-load to Δ-load transformation equations[edit]
Let
 . .
We can write the Δ to Y equations as
 (1) (1)
 (2) (2)
 (3) (3)
Multiplying the pairs of equations yields
 (4) (4)
 (5) (5)
 (6) (6)
and the sum of these equations is
 (7) (7)
Factor 

 from the right side, leaving 

 in the numerator, canceling with an 

 in the denominator.
 (8) (8)
Note the similarity between (8) and {(1), (2), (3)}
Divide (8) by (1)
 
which is the equation for 

. Dividing (8) by (2) or (3) (expressions for 

 or 

) gives the remaining equations.
 
 
No comments